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Disagreement is absolute! 

→ Scientific goals: constraints on F for discovery.

Philosophical goals: semantic individuation of G.

→ Even within the  philosophical goals, Reichenbach 
was too demanding about his conception of G.
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Synopsis

1) Two proofs (Weatherall & Manchak’s 2014) show that: non-relativistic
gravity is more susceptible to conventionalism than general relativity.

→ Not clear why there is a discrepency between the relativistic and the
non-relativistic cases.

2) A recent metaphysical position about spacetime called “unitism” and
its anti-thesis “separatism” (Gilmore, Costa, Calosi 2016):

→Missing mathematical underpinnings for unitism / separatism.

Claim:
Metric degeneracy is a crucial disanalogy between relativistic and non-
relativistic spacetime theories that underlies underdetermination and 
support for separatism.



Unity, unitism, 
unification

Universal forces and (non-) 
relativistic gravity theories

Geometric conventionalism 
through universal effects

Metric degeneracy and 
Newton-Cartan theory



Universa l  “ f o rces ” :  100  years o f  t rad ing o f f  geomet r ies (1 /3 )

Physical geometry (Helmholtz 1866): empirical question for the physical geometry of the world: rods and clocks.



Universa l  “ fo rces ” :  100 years o f  t rad ing o f f  geomet r ies (2 /3 )
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Physical geometry (Helmholtz 1866): empirical question for the physical geometry of the world: rods and clocks.

Geometric holism based on Poincaré’s equivalent proofs (1891):  there are many empirically equivalent combinations 
of geometries [G] and “universal forces” (“universal  effects”) [F]:   {G+F ,  G’+F’ , G’’+F’’,  ... }.



Universa l  “ f o rces ” :  100  years o f  t rad ing o f f  geomet r ies (3 /3 )

Physical geometry (Helmholtz 1866): empirical question for the physical geometry of the world: rods and clocks.

Geometric holism based on Poincaré’s equivalent proofs (1891):  there are many empirically equivalent combinations 
of geometries [G] and “universal forces” (“universal  effects”) [F]:   {G+F ,  G’+F’ , G’’+F’’,  ... }.

Conventionalism about space(time): ascertaining the physical geometry requires (in some way) a conventional choice.
→ Loosely associated with Poincaré, Duhem, Schlick, Carnap, and others, and Reichenbach (1926, Sec. 8).: 

An effect (force) is universal iff it
1. cannot be screened off by insulating walls
2. acts equally on all materials/particle species
Otherwise it is a differential effect (or force)
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Weathera l l  &  Manchak  (2014) :  “The  Geomet ry  o f  Convent iona l i t y ”

Can these trade-offs between geometry and universal forces always be made
given the mathematics of modern spacetime theories?

Weatherall & Manchak prove that – given a force field in the “standard sense”
(i.e., acting on a test body in the geodesic equation like a rank-2 tensor) –

(Geometrised) Newtonian gravity: yes, this is always possible.
General relativity: no, this is not always possible.

Striking:
(i) Much-needed rigour to a conceptual debate;
(ii) Explicit theory-dependence;

However:
(iii) Are the assumptions justified? (Dürr & Ben-Menahem 2022, Mulder 2025a)
(iv) Little engagement with Reichenbach’s project;
(v) No explanation / discussion of the discrepancy!

Spacetime M, ෤g, ෩∇    

with geodesics: ෨ξb෩∇b
෨ξa = 0

Spacetime M, g, ∇
with geodesics: ξb∇bξa = 0

Spacetime M, ෤g, ෩∇    

with dynamics: ෨ξb෩∇b
෨ξa + (𝐔𝐅) = 0

𝑀



Propos i t ion 1 :  Newton ian grav i t y  i s  underde te rmined

In GNG (built on degenerate metrics 𝑡𝑎 , ℎ𝑎𝑏 and derivative ∇):

•  There is no unique derivative operator compatible with 𝑡𝑎 and ℎ𝑎𝑏. 
 → A family of such operators exists.

• W&M show that any torsion-free connection  ෩∇ compatible with the 
same 𝑡𝑎 and ℎ𝑎𝑏 can be related to ∇ by a rank-2 anti-symmetric tensor 
field 𝐹𝑎𝑏, interpreted as a force field (analogous to the Faraday tensor).

  
• This field generates accelerations just as in standard Newtonian gravity, 

so postulating it provides an acceptable universal force.
  

The non-relativistic case (Prop. 1.) 
Fix a classical spacetime (𝑀, 𝑡𝑎 , ℎ𝑎𝑏, 𝛻) and consider an arbitrary torsion-free derivative 
operator on 𝑀, ෨𝛻, which we assume to be compatible with 𝑡𝑎 and ℎ𝑎𝑏. Then there exists 
a unique antisymmetric field 𝐹𝑎𝑏 such that given any timelike curve 𝛾 with unit tangent 
vector field 𝜉𝑎, 𝜉𝑛𝛻𝑛𝜉𝑎 = 0 if and only if 𝜉𝑛 ෨𝛻𝑛𝜉𝑎 = 𝐹 𝑛

𝑎 𝜉𝑛, where 𝐹 𝑛
𝑎 = ℎ𝑎𝑚𝐹𝑚𝑛𝜉𝑛.

Overl
eaf



Propos i t ion 2 :  GR is  less  suscep t ib le to  underde te rmina t ion

Compute the difference tensor C (for ∇= (෩∇, 𝐶) ) for conformally equivalent spacetimes ( ෤𝑔𝑏𝑐 = Ω2𝑔𝑏𝑐):

𝐶 𝑏𝑐
𝑎 =

1

2
𝑔𝑎𝑛(∇𝑛𝑔𝑏𝑐 − ∇𝑏𝑔𝑛𝑐 − ∇𝑐𝑔𝑏𝑛)=

1

2Ω2 (𝑔𝑏𝑐𝑔𝑎𝑛∇𝑛Ω2 − 𝛿𝑐
 𝑎∇𝑏Ω2 − 𝛿𝑏

 𝑎∇𝑐Ω2). 

With normalization 𝑔𝑎𝑏 𝜉𝑎𝜉𝑏 = 1 = ෤𝑔𝑎𝑏
ሚ𝜉𝑎 ሚ𝜉𝑏 = 𝑔𝑎𝑏Ω2 ሚ𝜉𝑎 ሚ𝜉𝑏

→ ሚ𝜉𝑎 = Ω−1𝜉𝑎 .

Geodesic equation aa = ሚ𝜉𝑏෩∇b
ሚ𝜉𝑎 = ሚ𝜉𝑏∇𝑏

ሚ𝜉𝑎+ 𝐶 𝑏𝑐
𝑎 ሚ𝜉𝑎 ሚ𝜉𝑏 = ⋯ = ⋯ =

1

Ω3 𝜉𝑏𝜉𝑐 − 𝑔𝑎𝑛 ∇𝑛Ω .

If 𝐹𝑎𝑏 exists, then (on a ∇-geodesic): ሚ𝜉𝑏෩∇b
ሚ𝜉𝑎 = 𝐹 𝑚

𝑎 ሚ𝜉𝑚 =
1

Ω
෤𝑔𝑎𝑛𝐹𝑛𝑚𝜉𝑚 =

1

Ω3 𝜉𝑏𝜉𝑐 − 𝑔𝑎𝑛 ∇𝑛Ω .

→ Together this leads to a contradiction→ No 𝐹𝑎𝑏 exists for GR! 

The relativistic case (Prop. 2.) 
Let 𝑀, 𝑔𝑎𝑏  be a relativistic spacetime, let ෤𝑔𝑎𝑏 = 𝛺2𝑔𝑎𝑏  be a metric conformally 
equivalent to 𝑔𝑎𝑏 and let 𝛻 and ෨𝛻 be the Levi-Civita derivative operators compatible 
with 𝑔𝑎𝑏 and ෤𝑔𝑎𝑏, respectively. Suppose 𝛺 is nonconstant. Then there is no tensor field 
𝐹𝑎𝑏 such that an arbitrary curve 𝛾 is a geodesic relative to 𝛻 if and only if its acceleration 
relative to ෨𝛻 is given by 𝐹 𝑛

𝑎 ሚ𝜉𝑛, where ሚ𝜉𝑛 is the tangent field to 𝛾 with unit length relative 
to ෤𝑔𝑎𝑏. (W&M, p. 242-3)



Compara t i ve func t ion :  No  “ fo rce -equ iva len t ”  to  GR l i ke  NCT/NG

Dürr & Ben-Menahem (D&BM) say the restriction to a “standard 
force field” is overly restrictive and conservative: 
→ Why not consider a broader notion of ‘interaction’, including 

rank-3 tensors 𝐹 𝑏𝑐
𝑎 ? 

Well, at least Fab has a comparative function.

Newton-Cartan theory has causally efficacious space and time …
… and is equivalent to Newtonian gravity, which is a “standard 
force” theory.

Is there a Newtonian force theory in flat space, equivalent to GR?

→ No such “standard-force-equivalent” exists for GR, analogous
tothe existence of Newtonian gravity for Newton-Cartan theory.

Geometric 
theory

FORCE 
theory

Non-
relativistic

Newton-
Cartan 
theory

Newtonian
gravity

Relativistic
General 
relativity

(UDT- ∀𝒈 ∀𝜼 ): for each metric g , the 
Minkowski metric η  is capable of 
reproducing the same observable 
consequences, given force tensor Fab . 
(Mulder 202?, p. 17)

(UDT- ∀𝒈 ∀𝜼 ): for each metric g , the 
Minkowski metric η  is capable of 
reproducing the same observable 
consequences, given force tensor Fab . 
(Mulder 202?, p. 17)

Dürr & Ben-Menahem (D&BM) say (FORCE) is 
overly restrictive because it is conservative. 
→ Why not consider a broader notion of 

‘interaction’, including rank-3 tensors 𝐹 𝑏𝑐
𝑎 ? 

1) One cannot appeal to simplicity of tensor 
rank as a criterion for theory choice: 

2) The force concept has historically proven to 
be considerably variable:

“to ennoble conservativeness as an unqualified virtue per se, we regard as unduly reactionary [...]; 
such a view would be amply belied by the history of science.”

Simplicity “is a pragmatic maxim par excellence (see e.g. Bunge, 1963). Its connection with truth is 
evidently fragile. It has its place as a heuristic rule of thumb in theory construction and 
assessment in praxi: it recommends to first inspect conservative hypotheses, which fit in most 
easily with our background assumptions, before considering more radical ideas.” (D&BM, p. 163)

Weatherall & Manchak (2014) formulate a constraint as a 
“standard force field”:

(FORCE-a) some physical quantity acting on a massive body 
or point particle;
(FORCE-b) represented a rank-2 tensor (field) Fab ;
(FORCE-c) the total force on a particle at a point must be 
proportional to its acceleration.
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Met r ic Degeneracy

are many empirically equivalent combinations of

In GR, the geometry uniquely determines the connection, so any change in connection requires a change in the metric, 
which cannot be captured by a standard force field.
In GNG, the connection is not uniquely determined by the metric structure, allowing one to reinterpret different 
connections (and thus different accelerations) as arising from universal forces.

But they don't dwell at length on why this difference arises.

  



Met r ic Degeneracy in  non- re la t i v i s t i c g rav i t y  /  Newton -Car tan  theory

A metric is degenerate at a point 𝑝 ∈ 𝑀 if the associated bilinear 𝑔𝑝: 𝑇𝑝𝑀 × 𝑇𝑝𝑀 → ℝ is degenerate.

, at each point ppp, you can ask:
•Is gpg_pgp​ invertible as a linear map TpM→Tp∗MT_pM \to T_p^*MTpM→Tp∗​M?
•Does it assign zero “length” to some non-zero vector in TpMT_pMTp​M?
If yes, then ggg is degenerate at that point.

Sometimes we say that “the metric is degenerate” on a region or the whole manifold. This can mean:
•It is degenerate at every point (e.g. in Newton–Cartan theory).
•It is degenerate on a subset (e.g. on a horizon or singular surface).
•It is nowhere non-degenerate, so there is no globally invertible metric.

Thus: In 

•Metric degeneracy is always determined pointwise: you check at each p∈Mp \in Mp∈M.
•Whether a global inverse metric exists depends on whether it’s non-degenerate at every point.
•Global features (like causal structure or spacetime geometry) depend on how degeneracy varies across points.

  

 But what about globally?



Why does  there  ex is t  an  𝐹𝑎 𝑏  f o r  NCT bu t  no t  fo r  GR?

Why does there

In GR, the geometry uniquely determines the connection, so any change in connection requires a change in the metric, 
which cannot be captured by a standard force field.

In GNG, the connection is not uniquely determined by the metric structure, allowing one to reinterpret different 
connections (and thus different accelerations) as arising from universal forces.

But they don't dwell at length on why this difference arises.
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Uni t i sm and Separa t i sm

are many empirically equivalent combinations of

What spacetime structure bears on this debate? 



Separa t i sm a l lows fo r  the  underde te rmina t ion o f  Newton-Car tan

are many empirically equivalent combinations of

Degeneracy Supports Separatism (in some contexts): 
For NCT, metric structure is degenerate and split:
• 1-form 𝑡𝑎 defines absolute time and a rank-2 tensor ℎ𝑎𝑏 defines spatial distances within time-slices.
• This naturally mirrors the separatist ontology: time and space are separate, primitive entities, not unified.
• There is no single unified metric uniting space and time into full 4D distances or intervals.

Unitism Requires a Non-Degenerate Metric
The main motivation for unitism, especially in the context of special and general relativity, is the invariance of the 
spacetime interval, defined by a non-degenerate metric:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈

This metric fuses space and time into a single geometric structure—something that breaks down if 𝑔𝜇𝜈 is degenerate.

→ Degeneracy implies you cannot define invariant intervals or may need to define causal structure in some other 
way.

Generally: If the spacetime of our best physical theories naturally involves degenerate metrics, this would suggest that 
the unitist assumption of unified spacetime is not generally applicable. 

  



Convent iona l i sm and incomple teness :  Ka luza -K le in  &  Un i f i ca t ion

Can this be generalised?



Uni t i sm ,  Un i t y,  Un i f i ca t ion…

Can this be generalised?
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Conc lus ion

Can this be generalised?
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