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Teleparallel gravity I/II
Where geodesics come apart

There exists an empirically equivalent theory to GR, called the Teleparallel Equivalent of General Relativity (TEGR) 

TEGR employs an antisymmetric connection ෩∇ instead of a symmetric one ഥ∇.

In GR: Levi-Civita connection ഥ∇ is uniquely metric-compatible.  
In TEGR: Weitzenböck connection ෩∇ is metric-compatible but not unique. 

They are related via the contorsion tensor: 𝐾 𝜇𝜈
𝜌

= ത𝛤𝜇𝜈
𝜌
− ෨Γ𝜇𝜈

𝜌
.

Two notions of geodesic come apart:
• Metric-geodesics: paths of extremal length, 

through 𝑔𝜇𝜈.

• Affine-geodesics (or auto-parallels): straightest paths, 
through ∇. 
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Teleparallel gravity II/II

Consequence of having an antisymmetric affine connection: 

• Riemann tensor 𝑅 𝜎𝜇𝜈
𝜌

≡ 0 , thus no (textbook) curvature

• Torsion tensor 𝑇 𝜇𝜈
𝜌

≠ 0 is non-zero , thus the spacetime is torsioned.

This leads to non-closure of parallelograms.

The empirical equivalence is at the dynamical level:

𝑆𝑇𝐸𝐺𝑅= න 𝑑𝑥𝜇 −𝑔 𝑇 = − න𝑑𝑥𝜇 −𝑔 𝑅 − 2∇𝜈𝑇 𝜈𝜌
𝜌

= 𝑆𝐸𝐻 +boundary term.

The stakes: is spacetime really curved?

Should we commit to curvature as a real property of spacetime?

Sebastian Bahamonde et al (2022). ``Teleparallel gravity: from theory to cosmology.” 
Ruben Aldrovandi & José G. Pereira (2013). Teleparallel Gravity: An Introduction.
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Symmetry and reverse-engineering GR (I/II)
The tetrad and metric formulations

Important paper: Knox (2011) ̀ `Newton-Cartan theory and teleparallel gravity: the force 
of a formulation.“ → TEGR is merely a reformulation of GR.

Multiple overlapping arguments: we distill three “Problems”.

Teleparallel gravity is usually set in the tetrad formalism : 𝑒𝜈
𝑎 𝑉𝜈 = 𝑉𝑎 . 

Main teleparallel quantities are commonly expressed with them:  ෨Γ𝜇𝜈
𝜌
= 𝑒𝑎

𝜌
𝜕𝜈𝑒𝜇

𝑎 .

Prominently the metric: 𝑔𝜇𝜈 = 𝜂𝑎𝑏𝑒𝜇
𝑎𝑒𝜈

𝜌
.

But: the tetrad formalism can (freely) be introduced in GR;
and although tetrads make torsion easier to recognise, this is not necessary!

#1 Problem of the Shy Metric Tensor

“In teleparallel gravity [the metric] does not appear in 
the formalism of the theory. Nonetheless, it is worth 
noticing that it has been hiding in the shadows all 
along, closely tied to the tetrad field. In fact, 𝑔𝜇𝜈 is 

still used to raise and lower indices, just as it is in GR. 
One might therefore have doubts that teleparallel 
gravity really postulates a different ontology; the old 
entities from GR appear to be waiting in the wings.” 
(Knox 2011, pp. 273--274)Metric formalism Tetrad formalism

Symmetric ∇ 𝑑𝑥𝜇 −𝑔 R 𝑑𝑥𝜇 −𝑒 𝑅

Antisymmetric ∇ 𝑑𝑥𝜇 −𝑔 𝑇 𝑑𝑥𝜇 −𝑒 𝑇 Jose Beltrán Jiménez, Lavinia Heisenberg and Tomi S. Koivisto (2018). ̀ `Teleparallel Palatini theories.” 
Salvatore Capozziello, Vittorio De Falco & Carmen Ferrara (2022). ̀ `Comparing Equivalent Gravities: common 
features and differences.”
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Symmetry and reverse-engineering GR (II/II)
The teleparallel derivative and conserved quantities

Another reverse-engineering problem: 
Conserved quantities appear under the teleparallel derivative:

𝐷𝜇𝑗𝑎
𝜇
≡ 𝜕𝑗𝑎

𝜇
+ ෨Γ𝜇𝜈

𝜌
−𝐾 𝜇𝜈

𝜌
𝑗𝑎
𝜈.

This closely mimicks the Levi-Civita connection of GR.

This Problem has a real bite: the Weitzenböck connection does not play as central 
a role in TEGR as does the Levi-Civita connection in GR. 

But TEGR can stand on its own two legs! GR is need not be mentioned.

Besides: reverse-engineering not surprising, as there is supposed to be symmetry.

Why more natural? → familiarity with a thick notion of inertial structure.

#2 Problem of Conserved Quantities

It would be more natural if conserved quantities
would come out without the use of contortion. Hence, 
one gets the impression that it is the Levi-Civita
connection that is doing all the work, not the 
Weitzenböck connection, establishing precedence of 
GR. (rephrasing of (Knox 2011, p. 272).)



9

The absence of inertial structure
The non-vanishing of the Weitzenböck connection coefficients and inertial functionalism

P1: A piece of geometrical structure can be regarded as representing spacetime 
only if it allows one to define (a structure of) local inertial frames

P2: A necessary condition for a derivative operator to define a structure of local 
inertial frames is that it has connection coefficients which can be made to vanish 
(at least locally)

P3: The components of the Weitzenböck connection cannot be made to vanish 
(even locally)

C: The Weitzenböck connection cannot be regarded as representing spacetime.

We believe there are other options available, corresponding to denying P1-P3.

#3 Problem of Non-vanishing 
Connection Coefficients

In GR, the inertial frame is where the coefficients of 
the Levi-Civita connection are zero. For the 
Weitzenböck connection this does not happen for any 
reference frame. (rephrasing of (Knox 2011, p. 273).) 

David John Baker (2019). ̀ `On Spacetime Functionalism.” Knox’s inertial spacetime functionalism
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The absence of inertial structure
The non-vanishing of the Weitzenböck connection coefficients and inertial functionalism

P1: A piece of geometrical structure can be regarded as representing spacetime only if it allows one to define (a structure of) local 
inertial frames

P2: A necessary condition for a derivative operator to define a structure of local inertial frames is that it has connection coefficients 
which can be made to vanish (at least locally)

P3: The components of the Weitzenböck connection cannot be made to vanish (even locally)

C: The Weitzenböck connection cannot be regarded as representing spacetime.

Deny P1: Inertial frames need not be so central to the functional role of spacetime
There are criteria to construct a functional role for spacetime that have nothing to do with inertial structure (cf. David Baker 2019). 

David John Baker (2019). ̀ `Knox’s inertial spacetime functionalism.”
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The absence of inertial structure
The non-vanishing of the Weitzenböck connection coefficients and inertial functionalism

P1: A piece of geometrical structure can be regarded as representing spacetime only if it allows one to define (a structure of) local 
inertial frames

P2: A necessary condition for a derivative operator to define a structure of local inertial frames is that it has connection coefficients 
which can be made to vanish (at least locally)

P3: The components of the Weitzenböck connection cannot be made to vanish (even locally)

C: The Weitzenböck connection cannot be regarded as representing spacetime.

Deny P2: We need not adopt such a thick notion of inertial structure, where force-free bodies necessarily follow the trajectories given by
the “kinematically fundamental” objects of the theory?

In TEGR, bodies follow paths given by combinations of kinematically fundamental objects: Weitzenböck and contorsion
→ The Weitzenböck connection satisfies a thin notion of inertial structure, where straight paths are defined by the “kinemetically
fundamental” affine connection.

It seems the thick notion is not theory-neutral and stems from familiarity with GR.

Read, James & Tushar Menon (2021). “The limitations of inertial frame spacetime functionalism.” 
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The absence of inertial structure
The non-vanishing of the Weitzenböck connection coefficients and inertial functionalism

P1: A piece of geometrical structure can be regarded as representing spacetime only if it allows one to define (a structure of) local inertial 
frames

P2: A necessary condition for a derivative operator to define a structure of local inertial frames is that it has connection coefficients which 
can be made to vanish (at least locally)

P3: The components of the Weitzenböck connection cannot be made to vanish (even locally)

C: The Weitzenböck connection cannot be regarded as representing spacetime.

Deny P3: One could adopt anholonomic coordinates
→ Yet, (Knox 2013) argues that anholonomic coordinates are not physical (non-linearity, path-dependence).

Eleanor Knox (2013). ̀ `Effective spacetime geometry"
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Visualising torsion
Is teleparallel gravity somehow metaphysically problematic?

A common complaint is that torsion is too hard to visualise!

And even that therefore it is not a good theory to adopt:

Distinction between intrinsic and extrinsic torsion is essential.

The Problem of Visualisability 

Curvature as a property of spacetime can be visualised, whereas torsion cannot. 
Assuming that visualisability is important for theory choice, GR and TEGR are not 
on a par.

For visualisation as an epistemic virtue, see:
Magdalena Kersting (2021). “Visualizing Four Dimensions in Special and General Relativity.“
Henk W. De Regt (1997). “Erwin Schrödinger, Anschaulichkeit, and quantum theory.”
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Extrinsic and intrinsic torsion
Just as easy or hard to visualisable as curvature

• Extrinsic visualisations:
Easy for curvature: embedding in 3d Euclidean space.

This has been done for torsion too: various work on Hehl, Obukhov, Lazar. 

For example on crystal structures with torsion: dislocations.

• Intrinsic visualisation:
This is perhaps impossible, already for curvature.

But Reichenbach (p.~55): we have insufficient experience of non-Euclidean geometries.

The untrained automobile driver sees the images in the rearview mirror as distorted, 
changing shape. Not so for the trained driver! 

→ Conclusion: for visualisability, curvature and torsion are on a par. Friedrich Hehl & Yuri Obukhov (2007). “Élie Cartan’s torsion in geometry and in field theory, an essay.”
Markus Lazar (2002). ``An elastoplastic theory of dislocations as a physical field theory with torsion.“ 
Hans Reichenbach (1928). The Philosophy of Space and Time.



Underdetermination: 
Teleparallel gravity and torsion

Knox: reverse-engineering and 
inertial structure

A problem of visualisation? 
Intrinsic and extrinsic torsion

Direction curvature as 
a common core



17

Direction curvature

Can the common core approach help?

I think yes: commit to what I call “directioncurvature”, i.e., Lie flow.

Using a completely general (symmetric+antisymmetric) connection:

∇𝜇, ∇𝜈 𝑉𝜌 = 𝑅 𝜎𝜇𝜈
𝜌

𝑉𝜎− 𝑇 𝜇𝜈
𝜎 ∇𝜎𝑉𝜌.

Make a conventional choice how to set up the straight line to get physics of the ground.

Giving up on the straight line is certainly not perspicuous!

Relates to sophistication/perspicuity debate: loss of affine structure.

→ logically weaker statements about nature, but no more underdetermination.

Is there a common core solution to the underdetermination?

Hermann Weyl (1918). “Gravitation und Elektrizität.”
Thomas Møller-Nielsen (2017). ``Invariance, interpretation, and motivation.”
Neil Dewar (2019). ``Sophistication about symmetries.”

T2

T1
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Conclusion

• There exists an empirically equivalent alternative to GR with no curvature.

• This prompts us to reconsider ontological commitment to curvature.

• Some reasons to prefer GR to TEGR on independent grounds see
insufficient: there are no convincing Problems of reverse-engineering, or 
missing inertial structure.

• Perhaps there are other reasons: e.g., simplicity…

• Nor is the Problem of Visualisation convincing: 
→ extrinsic torsion is just as visualisable as textbook curvature
→ intrinsic torsion is just as non-visualisable as textbook curvature.

• I propose: commit to common core, namely direction curvature, as the 
non-commutation of covariant derivates / the Weyl-Riemann operator:

∇𝜇, ∇𝜈 ≠ 0.
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